Мосин Олег Викторович : другие произведения.

Дейтерий, тяжёлая вода, эволюция и адаптация

Самиздат: [Регистрация] [Найти] [Рейтинги] [Обсуждения] [Новинки] [Обзоры] [Помощь|Техвопросы]
Ссылки:
Школа кожевенного мастерства: сумки, ремни своими руками
 Ваша оценка:
  • Аннотация:
    Вселенная, сформировавшаяся в результате “Большого взрыва” несколько десятков миллиардов лет тому назад, была значительно горячее и плотнее, чем сейчас и состояла, в основном, из двух элементов - водорода и гелия. Дейтерий сформировался в последующие мгновения эволюции Вселенной в результате столкновения свободного нейтрона и протона при температурах миллион градусов Цельсия. А ещё позже два атома дейтерия сформировали дейтерон и вошли в состав в ядро гелия, который состоит из двух протонов и двух нейтронов. Таким образом, дейтерий может служить своеобразным индикатором эволюции Вселенной, поскольку количество дейтерия в мире постоянно. Вплоть до настоящего времени считалось, что в процессе формирования гелия израсходовались почти все дейтероны, и лишь 10 тысяч дейтеронов остались неизрасходованными. Исходя из этого количества дейтерия в мире, природная распространённость дейтерия составляла по расчётам не более 0.015% (от общего числа всех атомов водорода). Совсем недавно проводя наблюдения Млечного Пути, американские учёные обнаружили что дейтерия — тяжёлого водорода - содержится в нём значительно больше, чем об этом говорили данные предыдущих исследований. По мнению астронома Джеффри Лински (Jeffrey L. Linsky) из университета Колорадо (University of Colorado), руководившего исследованием, эта новая информация может радикальным образом изменить теоретические положения о формировании звёзд и галактик.

 [О.В.Мосин]

О.В. Мосин

Вселенная, сформировавшаяся в результате "Большого взрыва" несколько десятков миллиардов лет тому назад, была значительно горячее и плотнее, чем сейчас и состояла, в основном, из двух элементов - водорода и гелия. Дейтерий сформировался в последующие мгновения эволюции Вселенной в результате столкновения свободного нейтрона и протона при температурах миллион градусов Цельсия. А ещё позже два атома дейтерия сформировали дейтерон и вошли в состав в ядро гелия, который состоит из двух протонов и двух нейтронов.

Таким образом, дейтерий может служить своеобразным индикатором эволюции Вселенной, поскольку количество дейтерия в мире постоянно. Вплоть до настоящего времени считалось, что в процессе формирования гелия израсходовались почти все дейтероны, и лишь 10 тысяч дейтеронов остались неизрасходованными. Исходя из этого количества дейтерия в мире, природная распространённость дейтерия составляла по расчётам не более 0.015% (от общего числа всех атомов водорода).

Совсем недавно проводя наблюдения Млечного Пути, американские учёные обнаружили что дейтерия - тяжёлого водорода - содержится в нём значительно больше, чем об этом говорили данные предыдущих исследований. По мнению астронома Джеффри Лински (Jeffrey L. Linsky) из университета Колорадо (University of Colorado), руководившего исследованием, эта новая информация может радикальным образом изменить теоретические положения о формировании звёзд и галактик.

Тяжёлый водород "прятался" от телескопов за скоплениями межзвёздной пыли и часто был недоступен для наблюдений в силу своей непрозрачности. Астрономы использовали данные ультрафиолетового телескопа FUSE (Far Ultraviolet Spectroscopic Explorer). Дейтерий создаёт характерное свечение в ультрафиолетовом диапазоне, благодаря которому разглядеть тяжёлый водород удалось именно с помощью FUSE.

До настоящего времени считалось, что природная распространённость дейтерия составляет не более 0.015% (от общего числа всех атомов водорода). Это количество зависит как от природы вещества, так и от общего количества материи, сформированной в ходе эволюции Вселенной. Теперь очевидно, что дейтерия в природе намного больше, чем предполагалось раннее.

Но с чем это может быть связано? Источником дейтерия во Вселенной являются вспышки сверхновых и термоядерные процессы, идущие внутри звёзд. Возможно этим объясняется тот факт, что мировое количество дейтерия повышается в период глобальных потеплений и изменений климата. Однако дейтерий довольно быстро разрушается в этих звёздах.

Дело в том, что наряду с водородом в первые мгновения после Большого взрыва образовалось и огромное количество его изотопа дейтерия. Исходя из предыдущих наблюдений, учёные постановили, что больше трети первоначально образованного дейтерия потратилось на создание звёзд. Однако, оказывается, что дейтерия в Млечном Пути намного больше, чем предполагали ранее. В частности, на звездообразование потрачена не треть, а всего 15% изотопа и он распределён неравномерно.

В частности, эти данные могут говорить о том, что для формирования звёзд требовалось значительно меньше водорода, превратившегося затем в гелий. Так же это может оказаться существенным основанием для пересмотра теории эволюции галактик и звёзд.

Если это так, то необходимо также пересмотреть теорию молекулярной эволюции и эволюции жизни на нашей планете, поскольку жизнь напрямую связана с водой и зарождалась в ней. Но была ли это обычная вода? Ещё 10 лет тому назад автор этой статьи, будучи аспирантом Московской государственной академии тонкой химической технологии им. М. В. Ломоносова в группе академика РАМН В. И. Швеца выдвинул предположение, что первичный "первобытный бульон", в котором зарождалась жизнь в виде первых коорцерватов, был насыщен тяжёлой водой вследствии того, что в атмосфере Земли не было защитного озонового слоя и вулканические геотермальные и электрические процессы в горячей атмосфере, насыщенной водой могли привести к обогащению гидросферы тяжёлой водой. Но тогда мало кто из учёных увлёкся этой идеей, хоть и напрямую никто не отвёрг её. И только сейчас стало очевидным, что учёные пренебрегали дейтерием в своих расчётах.

Если это так, то необходимо заново пересмотреть эволюцию всего живого на нашей планете, чтобы смоделировать и предсказать дейтерированные формы жизни. Тем более, что их можно легко создать в современных условиях - макромолекулы ДНК, белков, липидов и сахаров - вот те главные компоненты для конструирования дейтерированных мембран и изучения гидрофобных взаимодействий между дейтерированными молекулами.

Отдельный вопрос - генетика дейтерированных клеток и изучение распределения наследственного аппарата, а также физиология, цитология и морфология клетки при росте на тяжёлой воде. Модели дейтерированных систем довольно легко прогнозировать и конструировать в лабораторных условиях. Нами были получены адаптированные к тяжёлой воде штаммы бактерий, относящиеся к различным таксономическим группам. арактерной особенностью объектов являлось то, что весь биологический материал клетки вместо природного водорода содержал дейтерий.

Дейтерированные клетки адаптированных к максимальной концентрации тяжёлой воды в среде - весьма удобные объекты для исследования. В процессе роста клеток на тяжёлой воде в них синтезируются макромолекулы, в которых атомы водорода в углеродном скелете полностью замещены на дейтерий. Такие дейтерированные макромолекулы претерпевают структурно-адаптационные модификации, необходимые для нормального функционирования клетки в тяжёлой воде. Но эти изменения не единственны; физиология, морфология, цитология клетки, а также генетический аппарат клетки также подвергается воздействию и модификации в тяжёлой воде.

Одним из интереснейших биологических феноменов является способность некоторых микроорганизмов расти в искусственных условиях на средах, в которых все атомы протия заменены на дейтерий (О.В. Мосин, Д.А. Складнев, В. И. Швец, 1996), хотя в природе этот изотоп составляет лишь 0,015%.

Тяжёлая вода (оксид дейтерия) - имеет ту же химическую формулу, что и обычная вода, но вместо атомов водорода содержит два тяжёлых изотопа водорода - атомы дейтерия. Формула тяжёловодородной воды обычно записывается как: D2O или 2H2O. Внешне тяжёлая вода выглядит как обычная - бесцветная жидкость без вкуса и запаха.

По своим свойствам тяжелая вода заметно отличается от обычной воды. Реакции с тяжелой водой протекают медленнее, чем с обычной, константы диссоциации молекулы тяжёлой воды меньше таковых для обычной воды.

Молекулы тяжёловодородной воды были впервые обнаружены в природной воде Гарольдом Юри в 1932 году году. А уже в 1933 году Гильберт Льюис получил чистую тяжёловодородную воду путём электролиза обычной воды.

В природных водах соотношение между тяжёлой и обычной водой составляет 1:5500 (в предположении, что весь дейтерий находится в виде тяжёлой воды D2O, хотя на самом деле он частично находится в составе полутяжёлой воды HDO).

Тяжёлая вода токсична лишь в слабой степени, химические реакции в её среде проходят несколько медленнее, по сравнению с обычной водой, водородные связи с участием дейтерия несколько сильнее обычных. Эксперименты над млекопитающими показали, что замещение 25% водорода в тканях дейтерием приводит к стерильности, более высокие концентрации приводят к быстрой гибели животного. Однако некоторые микроорганизмы способны жить в 70%-ной тяжёлой воде) (простейшие) и даже в чистой тяжёлой воде (бактерии). Человек может без видимого вреда для здоровья выпить стакан тяжёлой воды, весь дейтерий будет выведен из организма через несколько дней. В этом отношении тяжёлая вода менее токсична, чем, например, поваренная соль.

Тяжёлая вода накапливается в остатке электролита при многократном электролизе воды. На открытом воздухе тяжёлая вода быстро поглощает пары обычной воды, поэтому можно сказать, что она гигроскопична. Производство тяжёлой воды очень энергоёмко, поэтому её стоимость довольно высока (ориентировочно 200-250 долларов за кг).

Физические свойства обычной и тяжёлой воды

Физические свойства D2O H2O

Молекулярная масса 20 18

Плотность при 20C (г/см3) 1,1050 0,9982

t кристаллизации (C) 3,8 0

t кипения (C) 101,4 100

Важнейшим свойством тяжёлой воды является то, что она практически не поглощает нейтроны, поэтому используется в ядерных реакторах для торможения нейтронов и в качестве теплоносителя. Она используется также в качестве изотопного индикатора в химии и биологии. В физике элементарных частиц тяжёлая вода используется для детектирования нейтрино; так, крупнейший детектор солнечных нейтрино в Канаде содержит 1 килотонну тяжёлой воды.

Российскими учёными из ПИЯВ разработаны на опытных установках оригинальные технологии получения и очистки тяжелой воды. В 1995 была введена в эксплуатацию первая в России и одна из первых в мире опытно-промышленная установка на основе метода изотопного обмена в системе вода-водород и электролиза воды (ЭВИО).

Высокая эффективность установки ЭВИО дает возможность получать тяжелую воду с содержанием дейтерия > 99,995 % ат. Отработанная технология обеспечивает высокое качество тяжелой воды, включая глубокую очистку тяжелой воды от трития до остаточной активности, позволяющей без ограничений использовать тяжелую воду в медицинских и научных целях. Возможности установки позволяют полностью обеспечить потребности российских предприятий и организаций в тяжелой воде и дейтерии, а также экспортировать часть продукции. За время работы для нужд Росатома и других предприятий России были произведены более 20 тонн тяжёлой воды и десятки килограммов газообразного дейтерия.

Существует также и полутяжёлая (или дейтериевая) вода, у которой только один атом водорода замещен дейтерием. Формулу такой воды записывают так: DHO.

Термин тяжёлая вода применяют также по отношению к воде, у которой любой из атомов заменен тяжёлым изотопом:

к тяжёлокислородной воде (в ней лёгкий изотоп кислорода 16O замещен тяжёлыми изотопами 17O или 18O),

к тритиевой и сверхтяжёлой воде (содержащей вместо атомов 1H его радиоактивный изотоп тритий 3H).

Если подсчитать все возможные различные соединения с общей формулой Н2О, то общее количество возможных "тяжёлых вод" достигнет 48. Из них 39 вариантов - радиоактивные, а стабильных вариантов всего девять:

Н216O, Н217O, Н218O, HD16O, HD17O, HD18O, D216O, D217O, D218O.

С первых экспериментов американца Креспи и Даболла в 1940-х годах прошлого века, вплоть до конца 90-х годов установилось устойчивое представление, что тяжёлая вода несовместима с жизнью и что высокие концентрации тяжёлой воды могут приводить к ингибированию многих жизненно-важных мутаций, включая блокировку митоза в стадии профазы, и даже в некоторых случаях вызывать спонтанные мутации.

Клетки животных способны выдерживать до 25-30% тяжёлой воды в среде, растений (50%), а клетки простейших микроорганизмов способны жить на 80% тяжелой воде. Однако, потом было доказано, что многие организмы могут быть адаптированы к росту на тяжёлой воде.

Тяжёлая вода высокой концентрации токсична для организма; химические реакции в её среде проходят несколько медленнее, по сравнению с обычной водой, водородные связи с участием дейтерия несколько сильнее обычных. Тем не менее тяжелая вода играет значительную роль в различных биологических процессах. Российские исследователи давно обнаружили, что тяжелая вода тормозит рост бактерий, водорослей, грибов, высших растений и культуры тканей животных. А вот вода со сниженной до 30% концентрацией дейтерия (так называемая "бездейтериевая" вода) способствует увеличению биомассы и количества семян, ускоряет развитие половых органов и стимулирует сперматогенез у птиц.

За рубежом пробовали поить тяжелой водой мышей со злокачественными опухолями. Та вода оказалась по настоящему мертвой: и опухоли губила, и мышей. Различные исследователи установили, что тяжелая вода действует отрицательно на растительные и живые организмы. Подопытных собак, крыс и мышей поили водой, треть которой была заменена тяжелой водой. Через некоторое время начиналось расстройство обмена веществ животных, разрушались почки. При увеличении доли тяжелой воды животные погибали. И наоборот, снижение содержания дейтерия на 25% ниже нормы в воде, которую давали животным, благотворно сказалось на их развитии: свиньи, крысы и мыши дали потомство, во много раз многочисленнее и крупнее обычного, а яйценосность кур поднялась вдвое.

Тогда учёные взялись за "облегченную" воду. Эксперименты проводили на 3 моделях перевиваемых опухолей: карцинома легких Льюис, быстро растущая саркома матки и рак шейки матки, который развивается медленно. "Бездейтериевую" воду исследователи получали по специальной технологии электролизом дистиллированной воды. В опытных группах животные с перевитыми опухолями получали воду с пониженным содержанием дейтерия, в контрольных группах - обычную. Животные начали пить "облегченную" и контрольную воду в день перевивки опухоли и получали ее до последнего дня жизни.

Вода с пониженным содержанием дейтерия задерживала появление первых узелков на месте перевивки рака шейки матки. Однако, на время возникновения узелков других типов опухоли облегченная вода не действала. Но во всех опытных группах с тяжёлой водой, начиная с первого дня измерений и практически до завершения эксперимента, объем опухолей был меньше, чем в контрольной группе. К сожалению, хотя тяжёлая вода и тормозит развитие всех исследованных опухолей, жизнь экспериментальным мышам она не продлевает.

Как это всё происходит на уровне метаболизма? При попадании клеток в дейтерированную тяжёловодородную среду из них не только исчезает протонированная вода за счет реакции обмена Н2О-D2О, но и происходит быстрый H?D обмен в гидроксильных, сульфгидрильных и аминогруппах всех органических соединений, включая белки, нуклеиновые кислоты, липиды, сахара. Только С-Н-связь не подвергается обмену и соединения типа С-D синтезируются "de поvo". Интересно, что после обмена H?D ферменты не прекращают своей функции (Themson et al., 1966; Денько, 1974), но изменения в результате изотопного замещения за счет первичного и вторичного изотопных эффектов (Thomson, 1963; Halevy, 1963), а также действие тяжёлой воды как растворителя (большая структурированность и вязкость по сравнению с обычной водой) приводят к изменению скоростей (замедлению) и специфичности ферментативных реакций в тяжёлой воде.

Присутствие дейтерия в биологических системах приводит к изменениям структуры и свойствам жизненно-важных макромолекул таких как дезоксирибонуклеиновые кислоты (ДНК) и белки. При этом различают первичные и вторичные изотопные эффекты дейтерия в зависимости от того, какое положение занимает атом дейтерия в молекуле. Наиболее важными для структуры макромолекулы связи являются динамические короткоживущие водородные (дейтериевые) связи. Они формируются между соседними атомами дейтерия (водорода) и гетероатомами кислорода, углерода, азота, серы и т.д. и играют главную роль в поддержании пространственной структуры макромолекулярных цепей и как эти структуры взаимодействуют с другими соседними макромолекулярными структурами, а также с тяжелой водной окружающей среды.

Структурно-динамические свойства клеточной мембраны, которые в большинстве зависят от качественного и количественного состава липидов, также могут изменяться в присутствии тяжёлой воды. Полученный результат объясняется тем, что клеточная мембрана является одной из первых органелл клетки, которая испытывает воздействие тяжёлой воды, и тем самым компенсирует реалогические параметры мембраны (вязкость, текучесть, структурированность) изменением количественного и качественного состава липидов.

Возможно эффекты, наблюдаемые при адаптации к тяжёлой воде связаны с образованием в тяжёлой воде конформаций молекул с иными структурно-динамическими свойствами, чем конформаций, образованных с участием водорода, и поэтому имеющих другую активность и биологические свойства. Так, по теории абсолютных скоростей разрыв СH-связей может происходить быстрее, чем СD-связей, подвижность иона D+ меньше, чем подвижность Н+, константа ионизации тяжёлой воды меньше константы ионизации обычной воды. Всё это отражается на кинетике химической связи и скорости хим. реакций в тяжёлой воде.

Связи, образованные атомами углерода с дейтерием немного прочнее, чем СН-связи из-за того, что частота колебания дейтерона, имеющего большую массу (в два раза большую, чем протон) и размер меньше частоты колебания протона и тем самым, это стабилизирует связь.

Другое важное свойство определяется самой пространственной структурой тяжёлой воды, которая имеет тенденцию сближать гидрофобные группы макромолекулы, чтобы минимизировать их эффект на водородную (дейтериевую) связь в присутствии молекул тяжёлой воды. Так что структура спирали, каковой является ДНК в присутствии тяжёлой воды стабилизируется. Кроме этого, отмечены радиопротекторные свойства тяжёлой воды на клетки печени обезьяны, в которой экспонировались эти клетки. Также было показано, что жизненный цикл плоских червей, выращенных на тяжёлой воде увеличивается в 1.5 раза по-сравнению с червями, выращенными на обычной воде (М.Шепенинов, 2006).

Вероятно, клетка реализует лабильные адаптивные механизмы, которые способствуют функциональной реорганизации работы жизненно-важных систем в тяжёлой воде. Так, например, нормальному биосинтезу и функционированию в тяжёлой воде таких биологически активных соединений, как нуклеиновые кислоты и белки способствует поддержание их структуры посредством формирования водородных (дейтериевых) связей в молекулах.

Связи, сформированные атомами дейтерия различаются по прочности и энергии от аналогичных водородных связей. Различия в нуклеарной массе атома водорода и дейтерия косвенно могут служить причиной различий в синтезах нуклеиновых кислот, которые могут приводить в свою очередь к структурным различиям и, следовательно, к функциональным изменениям в клетке.

Ферментативные функции и структура синтезируемых белков также изменяются при росте клеток на тяжёлой воде, что может отразиться на процессах метаболизма и деления клетки.

Изменения соотношения основных метаболитов в процессе адаптации к тяжеловодородной среде также может являться причинами гибели клеток. Клетки высших организмов погибают при содержании тяжёлой воды в составе тела свыше 30%, но микроорганизмы, легко приспосабливающиеся к резким изменениям среды обитания, способны жить и размножаться даже в 98%-ной тяжёлой воды (Мосин О.В, 1996).

Давно замечено, что адаптация к тяжёлой воде проходит легче при постепенном увеличении содержания дейтерия в среде (Pratt a. Curry, 1938), так как чувствительность к тяжёлой воде разных ключевых систем различна. Практически даже высокодейтерированные среды содержат протоны от 0,2-10%. Возможно, что остаточные протоны в момент адаптации к тяжёлой воде облегчают перестройку к изменившимся условиям, встраиваясь именно в те участки, которые наиболее чувствительны к замене. Если это так, то встраивание протонов должно приводить к накоплению легкого изотопа в органическом материале клеток и соответственно к обогащению тяжелым изотопом среды культивирования.

Способность к адаптации в высоких концентрациях тяжёлой воды связана с эволюционным уровнем организации, т. е. чем ниже уровень развития живого, тем выше способность к адаптации.

Дейтерированные клетки адаптированных к максимальной концентрации тяжёлой воды в среде микроорганизмов - весьма удобные объекты для исследования. В процессе роста клеток на тяжёлой воде в них синтезируются макромолекулы, в которых атомы водорода в углеродном скелете почти полностью замещены на дейтерий. Такие дейтерированные макромолекулы претерпевают структурно-адаптационные модификации, необходимые для нормального функционирования клетки в тяжёлой воде.

Эти факты позволяют видеть некоторую аналогию между адаптацией к тяжёлой воде и адаптации к низким температурам. Ещё Юнг (Jung, 1967) на клетках Escherichia coli, помещенных в 98,6%-ную тяжёлую воду, показал, что эффект торможения роста тяжелой воды может быть компенсирован повышением температуры роста. Аналогия с охлаждением позволяет рассматривать адаптацию к тяжёлой воде, как адаптацию к неспецифическому фактору, действующему одновременно на функциональное состояние большого числа систем: превращение энергии, биосинтетические процессы, транспорт веществ, структуру и функции макромолекул. Возможно, что наиболее чувствительными к замене Н+ на D+ оказываются именно те системы, которые используют высокую подвижность протонов и высокую скорость разрыва протонных связей. Такими системами в клетке могут быть дыхательная цепь и аппарат биосинтеза макромолекул, которые располагаются в цитоплазматической мембране или находятся под ее контролем.

Аналогия между адаптацией к тяжёлой воде и температурной адаптацией очень важна для конструирования дейтерированных ферментов, которые смогут функционировать в условиях высоких температур. Такие стабильные дейтерированные ферменты необходимы в биотехнологии, медицине и сельском хозяйстве. Это привело бы к ускорению обменных процессов в организме человека, а, следовательно, к увеличению его физической и интеллектуальной активности. Но вскоре возникли опасения, что полное изъятие из воды дейтерия приведет к сокращению общей длительности человеческой жизни. Ведь известно, что наш организм почти на 70% состоит из воды. И в этой воде 0,015% дейтерия. По количественному содержанию (в атомных процентах) он занимает 12-е место среди химических элементов, из которых состоит организм человека. В этом отношении его следует отнести к разряду микроэлементов. Содержание таких микроэлементов как медь, железо, цинк, молибден, марганец в нашем теле в десятки и сотни раз меньше, чем дейтерия. Что же случится, если удалить весь дейтерий? На этот вопрос науке еще предстоит ответить. Пока же несомненным является тот факт, что, меняя количественное содержание дейтерия в растительном или животном организме, мы можем ускорять или замедлять ход жизненных процессов.


 Ваша оценка:

Связаться с программистом сайта.

Новые книги авторов СИ, вышедшие из печати:
О.Болдырева "Крадуш. Чужие души" М.Николаев "Вторжение на Землю"

Как попасть в этoт список

Кожевенное мастерство | Сайт "Художники" | Доска об'явлений "Книги"